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A 

ABSTRACT 

Experimentally determined profiles of ionospheric current density within 

and near the equatorial electrojet have been derived from measurements of total 

magnetic field. The field measurements were obtained from rocket-borne 

rubidium vapor magnetometers launched near the coast of Peru during March 

1965. A normalized latitudinal cross-section of ionospheric current density 

has been obtained using the results of 9 rocket flights distributed between 140 

km S to 1100 km N of the magnetic equator. The lower boundary of the equatorial 

electrojet is near altitude 87 km. A steep vertical gradient in current density 

appeared near altitude 100 km and the maximum current density, 10 amp/km 2, 

was measured at an altitude of 107 km directly above the measured location of 

the magnetic equator. The contour for the halftpeak value of current density 

crosses the equator at altitudes of 102 k m  and 114 km and extends to 300 km 

north of the equator. The profile of current density near the magnetic equator 

suggests that the layer conductivity CT 

affects the electrojet configuration and also that the electrojet distorts the 

magnetic field sufficiently to affect the layer conductivities. Using observatory 

and rocket measurements the induced H component of the magnetic field was 

found to be 0.3 of the H contribution from the ionospheric current. A single 

nighttime rocket flight on the magnetic equator detected a very small ionospheric 

current opposite in direction to the eastward daytime electrojet. 

as well as the layer conductivity uyy 
*Y 
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I. INTRODUCTION 

Eight Nike-Apache rockets carrying total field magnetometers were launched 

from the USNS Croatan in March 1965 as part of the NASA Mobile Launch Expe- 

dition to the coastal waters of Peru. Advantage was taken of the mobility of the 

launch platform to attempt to obtain a latitudinal cross-section of the equatorial 

electrojet by means of appropriately placed rocket flights. Among the consider- 

ations entering into the selection of locations and times of rocket launches were 

additional magnetometer flights by other investigators (Maynard and C ahill, 

1965a) and rocket flights carrying other types of instrumentation. In particular, 

Aiken and Blumle (1965) launched rockets to measure electron density and elec- 

tron temperature in conjunction with several of the magnetometer flights reported 

here. 

Much information about the equatorial electrojet is already available from 

previous rocket flights (Singer, et al., 1951; Cahill, 1959 and Maynard and Cahill,  

1965b) and from studies based on data from magnetic observatories and other 

knowledge. These include studies by Bartels and Johnston, 1950; Onwumechilli, 

1959; Forbush and Casaverde, 1961; Rao and Raja Rao, 1963; and Sugiura and 

Cain, 1965. 

II. INSTRUMENTATION 

The primary instrument used in this study is the rubidium-vapor magnetom- 

eter (Bloom, 1962). In this magnetometer the Zeeman splitting of atomic energy 

levels in Rb8’ vapor is detected as resonance absorption of light from a Rb 85 
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source. The frequency of resonance, the Larmor frequency, is a direct measure 

of the total scalar magnetic field intensity by the relationship 

f (cps) = 466,7 5 5  F + (K) 359 F2 (1) 

for  a one-cell magnetometer where F is in gauss and K , usually < 0.5, indicates 

the fraction of the constant with F2 that appears in a given instrument. Here a 

self-oscillating, cross-coupled dual arrangement is used to largely eliminate the 

F2 dependence so that the variation with orientation is small, less than *2 

gamma at F = 0.5 gauss. Dual- (or single-) cell rubidium magnetometers have 

null regions (regions of low signal amplitude) of conical shape centered on the 

instrument optical axis and in the form of a zone centered on the plane perpen- 

dicular to the optical axis. The instruments used here have conical nulls of 

half-angle near 10' and zonal nulls of half-width 5' or  less. 

Three magnetometer configurations were used in these rocket flights ; the 

particular configuration for a given flight being determined by the existence of 

the magnetometer null zones. In one configuration the magnetometer optical 

axis was placed on the rocket spin axis. The one rocket making use of this 

configuration was flown on the geographic equator where the inclination of the 

magnetic field is 30'. With the rocket-spin stabilized so as  to maintain a near- 

vertical orientation throughout its flight, the magnetic field did not intercept the 

magnetometer null regions and continuous data could be obtained throughout the 
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flight. A second configuration involved placement of the magnetometer optical 

axis at 45' to the spin axis. A rocket incorporating this magnetometer configura- 

tion was flown on the magnetic equator. Here the geomagnetic field is horizontal 

so that the geomagnetic field vector intercepts a magnetometer null twice each 

rocket revolution. The third magnetometer configuration used on 6 flights in- 

volved the use of two dual-cell magnetometer units with their optical axis placed 

at approximately 45' with respect to each other and with each optical axis being 

inclined 45O to the rocket spin axis. The outputs of the two dual-cell magnetom- 

eters  were mixed to form a single continuous output signal, one magnetometer 

contributing signal when the other was operating in  a null region. 

The Larmor frequency output of each magnetometer o r  mixed pair was used 

to phase-modulate a 231.4-Mc/s 2-watt telemetry transmitter fed to a 2 or 4 

element turnstile antenna placed in  the base of the payload. Other payload com- 

ponents included a battery pack consisting of 20 HR1 silver cells to supply power 

for  the magnetometer and transmitter and a switching module containing 

partially shielded relays for switching operations on the ground. Seven of the 

payloads carried a Dovap (Doppler) transponder which was used to provide the 

primary means of trajectory determination. Also, seven of the payloads carried 

a separate experiment by T. Aggson involving the use of electrometers to meas- 

ure current between two dipole antennas and the rocket body. The three elec- 

trometers were fed into separate voltage-controlled oscillators. The outputs of 

these oscillators were fed through an amplifier to the telemetry transmitter 
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input together with the Rb Larmor frequency. By proper choice and placement 

of payload components, the magnetic contribution of each payload was 2 y  or  

less as measured at the position of the magnetometer sensor in a zero ambient 

field. Consequently, the magnetic contribution of a payload was small compared 

with contamination due to the rocket motor, the magnitude of which will be dis- 

cussed later. 

111. PROCESSING OF DATA 

A. Data Recovery and Preliminary Reduction 

The telemetry signal transmitted from the rocket was modulated by 

the Larmor frequency output of the magnetometer (roughly 100-150 Kc/s) and 

the outputs of up to 3 subcarrier oscillators operating at center frequencies of 

7, 10  and 1 4  kc/s. At the launch platform the received telemetry signal was 

recorded on magnetic tape together with a reference frequency, time-code and 

tape recorder speed-lock reference signal. In the data recovery process a 

tracking filter was el ,played to extract the Larmor frequency from the tape- 

recorded signal. A data-flagging procedure was utilized to indicate any failure 

of the filter to track the desired signal. The output frequency of the tracking 

filter was used to gate a preset interval over which a 5 Mc/s reference signal 

was counted, The accuracy to which the rubidium Larmor frequency can be 

determined by this procedure is 1 part in  5 x lo6 for a counting period of 1 sec. 

Thus, in principle, i f  a sample period of 0.1 sec is desired, the Larmor frequency 

can be measured sufficiently accurately to allow a 0.5 gauss magnetic field to be 
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determined with a precision of 0.1~. Once the Rb8' Larmor frequency is de- 

termined, a value of the scalar magnetic field is found representing the average 

field over the sampling interval. If the location of the rocket is known at the 

midpoint of a given sample interval, a reference magnetic field for that location 

can be computed using the coefficients of a spherical harmonic expansion of the 

geomagnetic field. The computed reference field (Bc) can be subtracted from 

the measured field (Bm); the resultingvalues of Bm-Bc form convenient means 

in which to represent the flight data. 

Ideally, the sample intervals used for data reduction should be as  short as  

possible in order to obtain maximum information from each flight. Sample 

intervals of 10-20 msec have been attempted but the results a re  erratic; evi- 

dently the signal-to-noise ratio of the recorded data is too low to allow accurate 

counting of the Larmor frequency over such short time spans. Consequently all 

results presented here are  derived by using sample intervals of either 1 sec o r  

an interval corresponding to the roll period of each rocket, typically 150-200 

msec. By sampling at the roll periods, e r ro r s  that a re  dependent on the angular 

orientation of the rocket measured in the plane perpendicular to its spin axis are  

averaged out. The result is a measurement of the scalar magnetic field that is 

independent of the rocket spin and precise to within a fraction of ly. This 

measurement gives the sum of the local geomagnetic field and the spin-axis 

component of the rocket's magnetic field. The data from most flights exhibit a 

sinusoidal variation indicating a magnetic contribution along the spin axis of the 
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rocket and a precessional motion of the rocket with a period near 30 sec. Owing 

to  the smoothness in the variation of the precession period and angle during the 

upper part of each flight, it is possible to apply a precession correction to the 

data of the form Csin (at + K). A computer program was used to apply such 

corrections to all flights except those evidencing a very minor precessional 

effect. The values assigned to the constant C in making these corrections for 

precession ranged between 1.0 and 4.6; these values being chosen to be equal to 

the observed precessional effect in y .  

B. Reference Geomagnetic Field 

Assuming that an exact absolute measurement of the ambient magnetic field 

is made, it is possible to determine the field contribution due to ionospheric 

currents only when both the position of measurement and the background geo- 

magnetic field as a function of position are exactly known. Spherical harmonic 

expansions of the geomagnetic field do not give an exact description of the field; 

the average e r r o r  on the earth's surface is estimated to be as low as 0.1 to 0.3 

per cent (Sugiura and Heppner, 1965). Even this small e r r o r  can be equal to an 

appreciable fraction of the ionospheric current contribution o r  exceed it in some 

cases. However, the absolute e r ro r  involved in a particular harmonic expansion 

is not a serious problem if  that expansion can describe precisely the geomagnetic 

field magnitude at one point on the rocket trajectory relative to  any other point. 

If local anomalies in the geomagnetic field are minor, then the spherical har- 

monic expansions now available can provide rather precise relative magnetic 
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field magnitude witinin a small region containing the rocket trajectory. Results 

from a towed proton magnetometer indicate that the region of the rocket flights 

desc-iibed liere w a s  yuiit: Iret: of appreciabie iocai anomaiies (private communi- 

cation from R. Hutchinson). Also this region was relatively well-mapped by the 

Vanguard III satellite, so a good geomagnetic field description is expected from 

the available expansions. Here the GSFC coefficients prepared by Hendricks and 

Cain (1966) are used to compute the reference geomagnetic field. 

C. Rocket Traiectories 

Owing to the ship's motion and other factors, the two shipboard radars were 

unable to track the rockets over the i r  full trajectories. In one case radar track- 

ing was lost a few seconds into the rocket flight. On several occasions the radars 

tracked until the rocket was above the atmosphere, and several of the rockets 

were observed near their impact points by the radars. Independent of the radars, 

radial velocity data were obtained on 7 of the rocket flights by the Dovap tech- 

nique (Seddon, 1963). Except on two of these flights, during which the shipboard 

Dovap transmitter was intentionally shut down near the time of rocket apogee, 

radial velocity data were obtained essentially throughout the flights. 

Given the flight azimuth from fragmentary radar data, it is possible to  ob- 

tain a trajectory with the Dovap radial velocity data. Even in those cases where 

the radar data could be extended with ballistic trajectory calculations , the results 

were clearly quite inaccurate and, therefore, the Dovap data have been relied 

upon heavily for trajectory information. M r .  J. C.  Seddon has contributed much 
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to our program by analyzing Dovap data from some flights to arrive at rocket 

trajectories. Parallel to his efforts we have made use of a procedure given by 

Jackson (1965) to  determine the trajectories. In those cases where only incom- 

plete Dovap data were available, radar data and magnetometer data were used 

to determine times of peak altitude independent of the Dovap data. On some 

flights it has been possible to apply several techniques and combinations of 

techniques to  arrive at trajectories in which confidence can be placed; on others 

uncertainty remains. Further mention of this situation as it pertains to individual 

flights is contained in Sec. V. 

IV. SUPPORTING AND COORDINATED OBSERVATIONS 

With the help of D r .  Albert0 Giesecke of the Instituto Geofisico del Peru, it 

was arranged for the Huancayo Geophysical Observatory to transmit to the 

Mobile Launch Facility readings of the horizontal (H) component of the magnetic 

field each half-hour. These readings were used to determine the appropriate 

launch times for the rocket flights. In addition, magnetic recordings obtained 

at six temporary recording sites in Peru (see Figure 1) were made available 

through tne courtesy of Dr. A. Giesecke and Dr.  S. E. Forbush. A s  part of their 

research program on the USNS Croatan, R. Hutchinson and B. Shuman operated 

a towed proton magnetometer throughout most of the ship's cruise and supplied 

certain of the results to us. Also, we have been provided with data from ionosonde 

soundings made by B. Wright from the USNS Croatan near times of the rocket 

flights. 
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Within one hour after several of the magnetometer flights, Blumle, Aikin 

and Jackson (1 965) launched rockets instrumented to measure electron density 

and electron temperature; here a definite attempt was made to launch the two 

types of payload as near simultaneously as possible. 

V. PRESENTATION OF DATA 
c 

A. Flight Data 

In reading the following descriptions of each flight, reference to Figures 1 

and 2 will be found useful. The flights a re  listed chronologically with many of 

the flight parameters being given in abbreviated form at the first of each flight 

description. Al l  times and dates are given in Universal Time. The measured 

magnetic equator referred to in the following flight descriptions was obtained by 

extending the Peruvian measurements (Private communication from M. 

Casaverde) out to sea parallel to the magnetic equator calculated from the 

GSFC coefficients; the calculated equator lies 60-70 km north of the measured 

equator. 

Flight 14.160: Launch time, 1535 on March 8, 1965; launch coordinates, 

0.02' N 84.32O W; flight azimuth, 2 7 7 O  (east from true north); adopted peak 

time, 197.4 sec (from time of launch); adopted peak altitude, 152.67 km; co- 

ordinates of peak altitude, 0.01' N 84.93' W (1200 km north of the measured 

magnetic equator); average roll period, 161 msec. The payload contained a 

dual-cell magnetometer with its optical axis along the spin (longitudinal) axis of 

the rocket; this was the only payload not containing electrometers. The adopt+ 

9 



trajectory was determined by Jackson's (1965) procedure modified to accept an 

independently-determined peak time. This peak time was determined from the 

magnetometer minimum reading corrected for horizontal gradient along the 

flight azimuth. Other methods used for determinations of peak time resulted 

in values differing from the adopted value by more than 1 sec, hence the confi- 

dence placed in this trajectory determination is low. The adopted peak-altitude 

is probably correct to within a few km. See Figure 3. 

Flight 14.171: Launch time, 1615 on March 16,  1965; launch coordinates, 

12.78' S 78.05O W; flight azimuth, 295O; adopted peak time, 194.7 sec; adopted 

peak altitude, 149.89 km; coordinates of peak, 12.57' S 78.51OW (18 km south 

of the measured magnetic equator); average roll period, 157 msec. 

The payload contained a 4-cell magnetometer with the configuration described 

earlier. The modified Jackson procedure was used to determine the trajectory 

with the peak time being calculated from the magnetometer data itself. In this 

instance, after making a small correction to take horizontal magnetic gradients 

into account, the peak time was assumed to correspond to the minimum recorded 

scalar field value. The flight data a re  displayed in Figure 4. 

Flight 14.172: Launch time, 0604 on March 18,  1965; launch coordinates 

12.78' S 77.97' W; flight azimuth, 276O; adopted peak time, 193.5 sec; adopted 

peak altitude, 149.46 km; coordinates of peak, 12.74' S 78.37' W (5 km north of 

measured magnetic equator); average roll period 164 msec. 
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The payload contained a 4-cell magnetometer. This flight was made near 

local midnight in an effort to investigate the possible existence of ionospheric 

current at night. The trajectory was determined in identical manner a s  for 

Flight 14.171, described immediately above. See Figure 5 for the flight data. 

Flight 14.176: Launch time, 1601 on March 18,  1965; launch coordinates, 

12.78O S,  78.00' W; flight azimuth, 269'; adopted peak time, 194.2 sec; adopted 

peak altitude, 151.44 km; coordinates of peak, 12.79' S ,  78.48' W (on the 

measured magnetic equator); average roll period, 176 msec. The payload con- 

tained a 4-cell magnetometer. A trajectory determination by the method em- 

ployed for Flights 14.171 and 14.172 gave results very similar to that obtained 

from a Dovap trajectory determined by J. S .  Seddon. His  trajectory was adopted 

and it is responsible for the remarkable agreement of the ascent and descent 

data shown in Figure 6. High confidence is placed in th is  trajectory; it is 

probably correct to within a few hundred meters. 

Flight 14.174: Launch time, 1624 on March 24, 1965; launch coordinates, 

11.73' S,  78.43' W; flight azimuth 267'; adopted peak time, 200.45 sec; adopted 

peak altitude, 161.38 km; coordinates of peak, 11.74' S,  78.82' W (100 km north 

of the measured magnetic equator) ; average roll period 176 msec. 

The payload contained a 4-cell magnetometer; the adopted trajectory was 

determined as for Flights 14.171 and 14.172. See Figure 7. 

Flight 14.173: Launch time, 1541 on March 26, 1965; launch coordinates, 

10.17' S,  79.50' W; flight azimuth 266'; adopted peak time, 197.4 sec; adopted 
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peak altitude 155.51 km; coordinates of peak, 10.19" S, 79.93" W (240 km north 

of the measured magnetic equator); average roll period, 142 msec. 

The payload contained a 4-cell magnetometer. Due to suspected radio- 

frequency interference the shipboard Dovap transmitter was shut off near the 

time of rocket peak altitude; hence only partial trajectory data were obtained. 

Partial Dovap and radar data were used to determine peak time, flight azimuth 

and the coordinates of the position of peak altitude. Then an artificial trajectory 

was generated wherein i t  was assumed that the entire path of the rocket was on 

the vertical line through apogee. A reference magnetic field was determined 

for this trajectory and corrected for the horizontal magnetic field gradient en- 

countered in the actual flight path of the rocket. Due to the use of this procedure 

the Bm-Bc data values a re  less certain than those from other flights, the uncer- 

tainty arising through the computation of Bc. See Figure 8. 

Flight 14.175: Launch time, 1608 on March 27, 1965; launch coordinates, 

14.17O S,  77.95O W; flight azimuth, 293"; adopted peak time, 197.15 sec; adopted 

peak altitude, 151.93 km; coordinates of peak, 13.99" S, 78.39" W (130 km south 

of the measured magnetic equator); average roll period, 147 msec. 

The payload contained a 4-cell magnetometer. As in the case of Flight 14.173, 

only partial Dovap data were obtained and the same procedure was used for de- 

termining an artificial one-dimensional trajectory, corrected for horizontal 

gradient effect. The reduced data a r e  shown in Figure 9. 

Flight 14.70: Launch time, 1547 on March 29,  1965; launch coordinates, 

12.08O S, 78.23' W; flight azimuth, 244O; adopted peak time, 214.3 sec; adopted 

peak altitude, 181.46 km; coordinates of peak, 12.32' S, 78.72O W (40 km north 

of the measured magnetic equator); average roll period, 136 msec. 
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This payload contained a dual-cell magnetometer with its optical axis aligned 

45O to the rocket spin axis. The rocket achieved high altitude because of its low 

weight ana Aean configuration, no Dovap transponder or Dovap aiiieiiiias beiiig 

aboard. Unfortunately, only fragmentary radar tracking was obtained. However, 

the flight azimuth was almost exactly along the direction of zero horizontal gra- 

dient in the geomagnetic field, a factor which contributed to a fairly accurate 

determination of peak time by two methods. One involved a determination from 

the magnetometer minimum reading; the second determination was made by 

assuming that the flight magnetometer intercepted the lower-altitude boundary 

of the ionospheric current sheet at the same altitude on ascending and descend- 

ing portions of the flight. The adopted peak time was that obtained by the latter 

method. A s  in the case of Flights 14.173 and 14.175, an artificial one-dimensional 

trajectory was generated. A value of peak altitude was calculated for this flight 

on the basis of ascending flight time corrected for the predicted effect of atmos- 

pheric drag. Consequentiy, the adopted peak altitude may be in ei=iioii by several 

kilometers. The flight data a r e  shown in Figure 10. 

B. Ground Magnetic Data 

The Kp values on the days of each flight a r e  given on Figure 2. There it is 

seen that, except for March 24,  26 and 27,  magnetic activity was low. In no case 

did Kp exceed 2, during the 3-hour interval containing any flight. Sudden com- 

mencement magnetic storms occurring on March 2 and 22 were reported at 

certain high-latitude observatories and a t  several low-latitude observatories. 

These two storms evidently were not reported as such by some stations, for 

example, Fredericksburg and Honolulu. 
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As part of a more extensive analysis by one of us (K. B . )  scalings have been 

made of magnetic records obtained at  the Peruvian observing stations indicated 

on Figure 1. Daily ranges of the horizontal component R(H) have been determined 

by a semi-automatic procedure which determines the daily maximum of the 

smoothed H trace and subtracts from it an appropriate point on a least squares 

straight line f i t  to scalings at 21, 23, 01 and 03 hours on the proximate nights' 

H trace. The resulting mean values of R(H) for the period March 1-23, 1965 a r e  

indicated on Figure 11A; early closure of several of the temporary observatories 

in the third week of March dictated the end-point of this period. The curve drawn 

on Figure 11A represents the average R(H) as a function of distance from the 

magnetic equator for the March period. 

Values of AH, AD and A Z  have been obtained at  each of the operating 

Peruvian observatories for the time of each rocket flight. Such values were 

obtained by subtracting a nighttime level (established as for the R(H) determina- 

tion described above) from the appropriate trace value at the time of each flight. 

The resulting AH values also a r e  plotted on Figure 11A. On Figure 11B these 

AH values are  replotted after being multiplied by a normalization factor N7 = 

100y/AH7 (Huancayo) where 7 represents the time of a particular rocket flight. 

Later we wish to relate the flight data to a "standard electrojet'' defined so that 

it produces A H = lOOy at Huancayo and has a particular current configuration 

regardless of which day it appears above Huancayo. The normalized values 

plotted on Figure 11B help to determine i f  this is an acceptable procedure since 

they indicate the day-to-day latitude variability in the electrojet on the days of 

interest. 
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VI. INTERPRETATION AND DISCUSSION OF DATA 

A. Current Density Profiles 

A primary goal of this study is to obtain an experimedally-determined cur- 

rent cross-section of the equatorial electrojet. Once the experimental cross- 

section is established to within the limit allowed by the accuracy of the rocket 

and ground magnetic data, the profile can be compared to a computed profile 

such as that of Sugiura and Cain (1966). 

At middle latitudes, where the local magnetic field of the ionospheric cur- 

rent approximates that of an infinite current sheet, the change of Bm-Bc with 

altitude is directly proportional to the ionospheric current density. The infinite 

current sheet approximation is less applicable to the equatorial electrojet in 

view of the finite width of that current. This point is illustrated by an altitude 

profile of the magnetic field within the equatorial electrojet calculated by 

Sugiura and Cain on the basis of their theoretical conductivity profile (ignoring 

indiuctinn effect:). In the irdinite cur ren t  sheet case the a!t;,!xdc vcrsm Bm-Be 

plot trends vertically outside the region of the current sheet; for the equatorial 

electrojet this is not so. A simplified calculation has been made of the e r r o r  

introduced into current density profiles by the assumption of an infinite current 

sheet. For this calculation the flight data have been used to determine the ap- 

proximate integrated ionospheric current as a function of distance from the 

magnetic equator. Both the ionospheric and an assumed (25% of the ionospheric 

current) induced current were considered. The result indicates that the infinite- 

sheet approximation yields an e r ro r  of 7% or less in the calculated value of cur- 

rent density at any point. Within the current region the error  discussed here is 
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not serious and so we proceed to obtain current density profiles using the infinite 

sheet approximation. 

Since the accuracy of determining the current density depends directly upon 

the shape of the altitude versus Bm-Bc plot, any er ror  in that shape is quite 

serious. Data plots using various calculated trajectories for a particular flight 

indicate that an e r ror  in the determination of trajectory peak altitude, while 

definitely creating an e r ror  in the altitude location of the current sheet, does 

not contribute as significantly to changing the shape of the altitude versus Bm-Bc 

plot. On the other hand, e r ro r  in the calculated peak time or  failure to correct 

exactly for horizontal gradients in the reference magnetic field will markedly 

alter the shape of the altitude versus Bm-Bc plot. Figure 12 illustrates the 

dependence of the plot shape upon the choice of peak time. Despite the depend- 

ence, we find empirically that the mean altitude versus Bm-Bc plot, obtained by 

averaging the ascent and descent legs of a flight, is substantially independent of 

the adopted peak time. Therefore, instead of treating the ascent and descent 

data sets  independently, one can combine them by averaging; to a large extent 

this procedure will eliminate two nearly indistinguishable sources of e r ror ,  in- 

correct choice of peak time and incorrect horizontal magnetic gradient correc- 

tions. 

setting J = 10/477 (ABh1 - ABh2)/(h2 - h,) amp/km2 where AB in y is obtained 

from the average of ascent and descent data for each flight, h being altitude in 

km. Those current density profiles in Figure 13 derived from the several 

flights near the center of the electrojet indicate that the lower boundary of the 

electrojet is very near 90 km. The maximum current density is found to be near 

altitude 108 km proximate to the magnetic equator. Above the altitude of maximum 

The current density profiles presented in Figure 13 a r e  obtained by 
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current density, the current density appears to decrease monotonically with alti- 

tude until i t  is near zero at altitude 140 km. 

Flights i4.174, i4.1'75, i4.173 and i4.ibo a re  successively farther from the 

center of the electrojet. Except for Flight 14.160, the current density profiles 

obtained from these flights a re  roughly similar to those found for the nearly on- 

equator flights although the height-integrated current density clearly decreases 

with distance from the magnetic equator. Flight 14.160, on the geographic 

equator, results in a current density profile extending from near 100 km to 140 

km altitude and having a broad maximum centered near 116 km altitude. 

B. Normalization of Data 

The equatorial electrojet amplitude varied from one day to the next on the 

days of the rocket flights (see Figure 11) and the rocket flights occurred at dif- 

ferent times relative to the times of electrojet daily maximum (see Figure 2). 

Therefore, it is necessary to normalize the flight data by use of the ground- 

based magnetic observations in order to arrive at a cnmplete profile ef the 

electrojet. 

On the basis of the ground data presented in Figure 11B the assumption is 

made that the position and configuration of the electrojet is the same during 

each flight. The rocket flights reported here took place approximately 2 O  longi- 

tude west of the ground observatories. In the absence of disturbance magnetic 

activity the electrojet amplitude at the flight longitude should lag that at the 

Peruvian observatories by about 8 minutes in time. This statement presupposes 

that the electrojet is local-time dependent. A minor correction is included in 

the normalization to account for this longitude factor. Huancayo is the most 

reliable eqbatorial observatory used, hence the flight data a re  normalized 



according to the Huancayo observations. 

i ze  each data set to a standard electrojet producing AH = 1OOy at Huancayo a r e  

given in  Table I. 

The various factors applied to normal- 

On Figure 13 the actual current density is designated by J, and J' denotes 

the normalized current density determined according to the corrections indicated 

in Table I. The similarly normalized changes in total field due to passage through 

the current sheet for each flight a r e  indicated on Figure 11B. Note that data from 

the single nighttime flight, Flight 14.172, are not included here. 

Two flights reported by Maynard and Cahill (1965), UNH 65-2 and UNH 65-5, 

a r e  included in Table I and Flight UNH 65-5 also is indicated on Figure 11B. In 

addition, we have determined current density profiles from the published data 

according to the method outlined above (See Figure 13). 

The current density profile obtained from Flight 14.176 deserves special 

mention. The trajectory obtained by J. C. Seddon for that flight appears to be 

sufficiently accurate to allow derivation of current density profiles from both 

the ascent and descent portions of the flight. These two profiles are indis- 

tinguishable above altitude 133 km; below they agree rather closely. 

Table I. Factors entering into normalization of flight data to an electrojet 

producing AH = lOOy at Huancayo. The Huancayo AH values a r e  for the mid- 

times of each flight. Row 5 gives the correction in y to account for the differ- 

ence in longitude between Huancayo and the location of each flight. The ratio 

J'/J is the normalization factor relating the normalized and actual current 

densities. Flights UNH 65-2 and UNH 65-5 a r e  those reported by Maynard and 

Cahill (1965a). 
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TABLE I 

Flight 

14.160 

UNH 65-2 

UNH 65-5 

14.171 

14.172 

14.176 

14.174 

14.173 

14.175 

14.70 

Date 

March 8 

9 

12  

16 

18 

18 

24 

26 

27 

29 

- 

Time Lag, 

Huancayo AH Minnbes 

100.6 

107 

100 

12 0.6 

(Nighttime Flight) 

117.4 

107.0 

88.8 

65.1 

101.5 

37 

36 

24 

12 

12 

14 

18 

12 

13 

Time Lag 

Ccrrectics, r̂' 

-15 

-15 

- 7  

+ 3  

0 

+ 5  

- 3  

dist. 

+ 5  

C. Cross-sectional Profile and a New Model for the Electrojet 

T ?  /r 
0 / o  

1.17 

1.09 

1.08 

0.809 

0.852 

0.893 

1.16 

1.54 

0.939 

Vakes of current density, obtained from scaling of hand-drawn, smoothed 

curves through the data displayed in- Figure 13 , have been used to compile Fig- 

ure  14, an experimentally determined cross-section of the equatorial electrojet. 

The contours depicted on Figure 14 were uniquely determined by a procedure 

involving linear interpolation in the horizontal direction only. Thus , any error  

in the location of the current density contours directly reflects e r ror  in the 

individual profiles of Figure 13 or error introduced by a hand-smoothing of 

those profiles. The construction of Figure 14 is based upon the assumption that 

the day-to-day variation in the electrojet is in intensity only and not in location 

or configuration. The values assigned to the contours of current density refer 

to an electrojet producing AH = 1007 at Huancayo. 
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Several features of Figure 14 may be due to inaccuracies inherent in the 

flight data o r  to simplifying assumptions made in the reduction of the data to 

obtain current density profiles. In particular, the effects of induced currents 

have been ignored in the reduction and the finite width of the electrojet was not 

taken into account in determining the individual current density profiles. The 

effect of ignoring the induced current of finite but unknown extent is that the 

current density obtained at the higher altitudes is slightly higher than it should 

be. This very minor measurement e r ror  occurs due to the negative gradient 

(with height) of the field from induced currents; within the main part of the 

electrojet, the error  is negligible, and below the electrojet the effect is small 

compared to the effect of the finite width of the electrojet. The finite width of 

the eastward electrojet in itself produces a small deviation of the altitude versus 

Bm-Bc plots below the electrojet. A s  shown by Sugiura and Cain (1966), the 

effect is the same as  that of a weak westward current just below the main east- 

ward current. This apparent westward current, seen on several of the profiles 

in Figure 13, has been ignored in the compilation of Figure 14. 

Of particular interest on Figure 14 is the behavior of the cross-sectional 

profile in the immediate vicinity of the magnetic equator. The asymmetry there, 

the thinness of the current relative to that just to the north and south, and the 

observed latitudinal extent of the electrojet are unexpected on the basis of the 

model electrojet computed by Sugiura and Cain. Their calculation gives values 

of the effective conductivity 
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where wG , 51 and 5 are the direct, Pederson and Hall  conductivities, respec- 

tively, and I is the inclination. 

If it is assumed that the vertical current through the region of the electrojet 

is entirely inhibited by polarization of the layer, then the horizontal currents are 

Jx = E x  wxy Ey 

Jy = -U XY Ex -t 5yy Ey 

where x and y are positive southward and eastward, respectively (Price, 1965). 

Exactly on the equator uXy = 0; i f  it is assumed that E = E,, then the horizontal 

current is eastward and is given by J = cYy Ey. However, Maeda (1965) has 

shown that 5xy is non-zero just off the equator and reaches a maximum exceed- 

ing w at about 56 km from the equator. Since the electrojet is limited in lati- 

Y 

YY 

tudinal extent, we 

plete inhibition of 

expect north-south currents to be inhibited, Assuming com- 

the north-south current requires, from Equation 2,  

The expressions for a and aXx are given by Chapman (1956): 
XY 

ax, = o0 o1 (ao sin2 I t a1 cos2 I) 

0 = 50 a2 sin I (ao s in2  I + a1 cos2 I )  
XY 

Hence 
ff 2 E, =- s i n  I EY 
Ol 
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. 
South of the equator sin I is negative, it is zero at the equator and positive to the 

north. Thus two regions of polarization field Ex occur: the one south of the 

equator is directed northward and the one to the north of the equator is directed 

southward. Substituting Equation (7) into Equation (3) yields 

e J ,  = (F 2 - oxy s i n  I t cyy) 

1 

This expression for Jy constitutes a model for the equatorial electrojet. 

Since sin I has opposite sign on either side of the equator, this model yields an 

asymmetrical electrojet. The model gives the same configuration exactly on 

the equator as  the model of Sugiura and Cain but the current density is decreased 

to the south of the equator and enhanced on the north side relative to the Sugiura 

and Cain model. The difference between this model and that of Sugiura and Cain 

will be greatest a few tens of kilometers to the north and south of the magnetic 

equator where Maeda's calculations show cxy to be maximum. The ratio c2/c1 

is altitude-dependent, i t  being greatest near altitude 100 km. This ratio at 100 Inn 

is 27 according to a table of numerical values given by Chapman (1956). Maeda's 

calculation of c 

tude 100 km and where I = lo. At this value of I the term in Equation (8) con- 

taining the layer conductivity oxy clearly is important in determining the cur- 

rent density if the southward current is completely inhibited as assumed for this 

model. 

shows that the ratio of w ~ ~ / D ~ ~  is approximately 1/2 at alti- 
YY 

The asymmetry shown in Figure 14 may not be entirely explained by the 

model described above. Another factor of possible importance is the modifica- 

tion to the inclination of the magnetic 

jet acts to decrease the inclination of 

field caused by the electrojet. The electro- 

the field to the north of the equator and to 
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increase it to the south. This modification tends to shift northward the regions 

where the effective layer conductivity (cr2/ul)uXy sin I is important. A complete 

c~lciilatioii tiikiiig iiiii, account the observed electrojet configuration is required 

to determine the magnitude of this effect, however, the near-equatorial portion 

of Figure 14 strongly suggests it's importance. 

D. Fine Structure in the Electrojet 

Due to the smoothing applied to the profiles of Figure 13, the contours on 

Figure 14 do not show any indication of fine structure in the electrojet. Most of 

the profiles in Figure 13 do indicate the existence of 2 or more close-spaced 

maximums near the altitude of peak current density. This variation may be due 

to e r ro r s  caused by precessional effects, particularly in the case of Flights 

14.173 and 14.70 to which no precession corrections were applied. The data 

from these two flights evidenced little precessional effect; hence, no correction 

was made during the data reduction process. Yet the scatter in the upper por- 

tions of the current demity profiles cbttaincd from these 2 flights (Figure i3 j 

indicates that a precessional correction should have been applied. Likewise, 

comparison of the scatter in the profiles of these 2 flights with that in the pro- 

files of all other flights, to which a correction was applied, attests to the success 

of the precessional corrections which were used. Nevertheless , close examina- 

tion of the flight data obtained with high sampling rates is suggestive that much 

of the apparent structure in the profiles of Figure 13 is due merely to spin and 

precession modulation. 

E. The Nighttime Electrojet 

One rocket, Flight 14.172 was launched near local midnight. The resulting 

altitude versus Bm-Bc plots contained in Figure 5 trend almost vertically except 
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for noticeable modulation due to precession of the rocket. A slight offset appears 

in the uncorrected data near altitude 100 km. Straight lines fitted by the least 

squares method to the altitude versus Bm-Bc plots in the altitude ranges 60 to 

90 and 110 to 150 km, respectively, when extended to the 100 km level (dashed 

portions on Figure 5), indicate an electric current near that altitude. A single 

precession correction of the form C sin (ut + k) did not satisfactorily remove the 

precession modulation from the data; a correction corresponding to a precession 

period of 36 sec largely removes the precession modulation from the ascent data 

(plot I on Figure 5), whereas one corresponding to a precession period of 35 sec 

is most effective when applied to the descent data (plot I1 on Figure 5). Clearly, 

the offset of the least squares-fitted lines at  the 100 km level depends little on 

precession modulation. Hence, we can safely conclude that a small nighttime 

electrojet did exist at the time of the flight. The current was westward, opposite 

to the daytime electrojet, and gave r i se  to a discontinuity with magnitude near 

6~ Note also that indications of a westward nighttime electrojet have been found 

by Balsley (1965). 

F. Currents Induced in the Earth 

The data presented in Figure 11B provide a means of estimating what pro- 

portion of the observed diurnal magnetic field variations is due to the primary 

ionospheric currents and what is the result of secondary currents induced in 

the ground. 

The points on the upper curve of Figure 11B show the total change in Bm-Bc 

as the rockets passed through the jet. These readings a r e  therefore determined 

mainly by the intensity of the ionospheric currents and, on the assumption that 

the vertical thickness of the jet is small compared with i ts  height, they a re  
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substantially una€fected by the induced earth currents. On the other hand, the 

ground data (lower curve of Figure 11B), a r e  influenced by both primary (iono- 

spheric) currents and secnndary (gxcnd) currents. Pizglectiiig the sirnail phase 

difference between the two current systems it  is ,  therefore, a simple matter to 

differentiate between the two field components. On this basis the value of AH 

(induced)/AH (external) obtained a t  various distances from the magnetic equator 

(150 km S to 250 km N) ranges from 0.23 to 0.33; the average of 8 such determi- 

nations was 0.28. 

VII. SUMMARY 

The results of 8 rocket flights into and near the equatorial electrojet just off 

the coast of Peru a r e  presented here. One nighttime flight on the magnetic equa- 

tor detected a slight westward current near an altitude of 100 Inn. A noontime 

flight on the geographic equator penetrated a current layer with maximum cur- 

rent density near altitude 115 km. This layer evidently is due primarily to the 

Pederson current c1 E" and is the same one responsible for the mid-latitude 

Sq magnetic variations. The 6 other rockets were flown within 200 km of the 

measured magnetic equator where they penetrated the equatorial electrojet. 

This current, due to the sum of the Pederson current and Hall currents enhanced 

by polarization electric fields, has a lower boundary near 87 km altitude and 

maximum current density of 10 amp/km2 near 107 km altitude. According to 

our measurements, the electrojet appears to have a lower maximum current 

density and is more extended in latitude than is indicated by the model calcula- 

tion of Sugiura and Cain (1965). Also, the cross-sectional current density pro- 

file is more complex proximate to the equator than can be accounted for by the 

Sugiura and Cain model. 
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The complexity in the profile suggest the importance of north and south 

polarization fields just off-equator. A model based on the assumption of com- 

plete inhibition of the north-south current leads to derivation of an 'effective' 

conductivity involving the layer conductivities u and D . This model appears 

to account qualitatively for some features of the observed complexity of the 

electrojet. 

XY YY 

A detailed comparison of the rocket data with the appropriate ground data 

allowed a determination of the induced part  of the daily magnetic variations in 

H. On the basis of some simplifying assumptions it was found that the ratio of 

induced to inducing field was 0.28. 
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Figure 1-Locations of the midpoints of the 8rocket flights and also flights UNH 65-2 and UNH 65-5 
launched by Maynard and Cahill  (1965a). Also shown are the locations of 7 temporary or permanent 
magnetic observatories from which data were utilized. Latitudes and longitudes are south and 

west, respectively. 
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r F L .l4. I 60 

Bm-Bc (7) 
Figure 3-Data from Fl ight  14.160 plotted in  the form of alt itude versus the measured scalar f ie ld  
Bc. The plot i s  formed by a straight-line connection of a l l  data points obtained with a 1 sec sam- 
p le  interval. Although ascent data taken below 60 km altitude i s  shown on th is  and following dia- 
grams, those data are not reliable due to possible trajectory errors. Descent data below an altitude 
of approximately 80 km are seriously affected by the magnetic f ie ld  of the rocket a s  it turns over 
on re-entry. 
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Bm-Bc (7) 

Figure 4-Data from Flight 14.171; see the title for Figure 3. 
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UNCORRECTED 
DATA 

FL. 14.172 
18 MAR 1965 
0604 U T  

GSFC REFERENCE FIELD 

PRECESSION CORRECTED 
DATA 

I - 

Bm-Bc (7) 
Figure 5-Data from Flight 14.172, flown near local midnight. 
ascent and descent, respectively. 

Curves labeled A and D refer to 
See text for description of the 3 sets of curves presented here, 
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FL 14.176 
I8 MARCH 1965 
1601 UT 

GSFC REFERENCE FIELD 

*) 
b d 

0 .  

ASCENT-: 

Figure 6-Data from Flight 14.176. Above altitude 116 km all  ascent and descent data points not 

contained within the curve are indicated by full circles. Due to the proximity of the ascent and 
descent data sets, connecting curves between consecutive points are omitted. 
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FL. 14.174 
24 MAR 1965 
1624 UT 

GSFC REFERENCE FIELD 

0 50 100 I50 200 
B m - B c  ( 7 )  

Figure 7-Data from Flight 14.174; see the t i t le for Figure 3. 
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Figure 8-Data from Flight 14.173; see the title for Figure 3 and the discussion in text. 
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27 MARCH 1965 

ONE DIMENSIONAL TRAJECTORY 
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9-Data from Flight 14.175; see the title for Figure 3. Figure 
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FL 14.70 
29 MAR 1965 
1547 UT 

ONE DIMENSIONAL TRAJECTORY 
WITH GSFC REFERENCE FIELD 

9m - Bc ! 1) 

Figure IO-Data from Flight 14.70; see the title for Figure 3. 
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Figure 11A-The eman range R(H) of the H component as a function of distance north and south 
of the equator. The points, designated according to  the key at upper left, represent instantaneous 
R(H) values measured at  the Peruvian observatories a t  the mid-time of the various rocket flights; 
Figure 11B-The mean and instantaneous R(H) values i n  Figure 11A now normalized to AH =lo0 y 

a t  Huancayo. Similarly normalized values of AF, the total change in  scalar f ie ld  measured with the 
rockets on their passage through the ionospheric current, are plotted at  the top with a smoothed- 
by-eye curve drawn through them. 40 
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